1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
use embassy_executor::Executor;
use embassy_time::{Duration, Timer};
use esp_println::println;
use hal::{
clock::ClockControl,
embassy,
gpio::{Gpio7, Output, PushPull},
interrupt,
peripherals::{Interrupt, Peripherals, UART1},
prelude::*,
system::SystemParts,
timer::TimerGroup,
uart::{
TxRxPins,
},
Priority, Rng, Rtc, Uart, IO,
};
use nmea::ParseResult;
/// The Rust ESP32-C3 board has onboard LED on GPIO 7
pub type OnboardLed = Gpio7<Output<PushPull>>;
static MOCK_SENTENCES: &'static str = include_str!("../../tests/nmea.log");
pub struct Application {
// TODO: Uncomment when you create a `Uart` instance of the `UART1` peripheral
uart: Uart<'static, UART1>,
// TODO: Uncomment when you create a `Rng` instance
rng: Rng<'static>,
// TODO: Uncomment when you create the `OnboardLed` instance
onboard_led: OnboardLed,
}
impl Application {
/// Initialises all the peripherals which the [`Application`] will use.
pub fn init(peripherals: Peripherals) -> Self {
let system: SystemParts = peripherals.SYSTEM.split();
let clocks = ClockControl::boot_defaults(system.clock_control).freeze();
let mut rtc = Rtc::new(peripherals.RTC_CNTL);
let mut peripheral_clock_control = system.peripheral_clock_control;
let timer_group0 =
TimerGroup::new(peripherals.TIMG0, &clocks, &mut peripheral_clock_control);
let mut wdt0 = timer_group0.wdt;
let timer_group1 =
TimerGroup::new(peripherals.TIMG1, &clocks, &mut peripheral_clock_control);
let mut wdt1 = timer_group1.wdt;
// Disable watchdog timers
rtc.swd.disable();
rtc.rwdt.disable();
wdt0.disable();
wdt1.disable();
#[cfg(feature = "embassy-time-systick")]
embassy::init(&clocks, system_timer);
#[cfg(feature = "embassy-time-timg0")]
embassy::init(&clocks, timer_group0.timer0);
// Setup peripherals for application
let io = IO::new(peripherals.GPIO, peripherals.IO_MUX);
// Onboard LED
// Rust ESP32-C3 schematics: https://raw.githubusercontent.com/esp-rs/esp-rust-board/master/assets/rust_board_v1_pin-layout.png
// Set GPIO7 as an output, and set its state high initially.
let mut onboard_led = io.pins.gpio7.into_push_pull_output();
onboard_led.set_high().unwrap();
// Setup Random Generator for GNSS Reading
// Hal example: https://github.com/esp-rs/esp-hal/blob/main/esp32c3-hal/examples/rng.rs
let rng = Rng::new(peripherals.RNG);
// let rng = todo!("Initialize the Random generator");
// The Rust ESP32-C3 board has debug UART on pins 21 (TX) and 20 (RX)
// but you should use GPIO pins 0 (TX) and 1 (RX) for sending and receiving data respectively
// to/from the `power-system` board.
// TODO: Configure the UART 1 peripheral
// let uart1 = todo!("Configure UART 1 at pins 0 (TX) and 1 (RX) with `None` or default for the `Config`");
let uart1 = Uart::new_with_config(
peripherals.UART1,
None,
Some(TxRxPins::new_tx_rx(
io.pins.gpio0.into_floating_input(),
io.pins.gpio1.into_push_pull_output(),
)),
&clocks,
&mut peripheral_clock_control,
);
interrupt::enable(Interrupt::UART1, Priority::Priority1).unwrap();
Self {
uart: uart1,
rng,
onboard_led,
}
}
/// Runs the application by spawning each of the [`Application`]'s tasks
pub fn run(self, executor: &'static mut Executor) -> ! {
executor.run(|spawner| {
spawner.must_spawn(run_uart(self.uart));
spawner.must_spawn(run_gnss(self.rng));
})
}
}
/// # Exercise: Parse GNSS data from NMEA 0183 sentences
///
/// This task parses NMEA sentences simulated from a GNSS data log file
/// The task picks random sentences from a log file and looks out for `GNS` and `GSV` messages
///
///
/// Print the ID's of satellites used for fix in GSA sentence and the satellites in view from the GSV sentence
///
/// `nmea` crate docs: <https://docs.rs/nmea>
///
/// 0. Add the `nmea` crate to the `Cargo.toml` of the `onboard-computer`
/// - You should exclude the `default-features` of the crate, as we operate in `no_std` environment
/// - Alternate solution: You can add the crate to the `workspace` dependencies of the project in the `Cargo.toml` of the project
/// For more details see: <https://doc.rust-lang.org/cargo/reference/workspaces.html#the-dependencies-table>
///
/// 1. Use the `nmea` crate to parse the sentences
/// 2. Print the parsing result (for debugging purposes) using `esp_println::println!()`
/// 3. Use a match on the result and handle the cases:
/// - GSA - print "The IDs of satellites used for fix: {x:?}" field
/// - GSV - print "Satellites in View: {x}" field
/// 4. Repeat this processes every 2 seconds.
#[embassy_executor::task]
async fn run_gnss(mut rng: Rng<'static>) {
loop {
let num = rng.random() as u8;
let sentence = MOCK_SENTENCES.lines().nth(num as usize).unwrap();
// println!("(debug) NMEA sentence at line: {num}: {sentence}");
// 1. Use the `nmea` crate to parse the sentences
// TODO: Uncomment line and finish the `todo!()`
// let parse_result = todo!("call nmea::parse_str");
let parse_result = nmea::parse_str(sentence);
// 2. Print the parsing result (for debugging purposes) using `esp_println::println!()`
// println!("{:?}", parse_result);
// 3. Use a match on the result and handle the sentences:
// - GSA
// - GSV
match parse_result {
Ok(ParseResult::GSA(gsa_data)) => {
println!("GSA: Fix satellites: {:?}", gsa_data.fix_sats_prn);
}
Ok(ParseResult::GSV(gsv_data)) => {
println!("GSV: Satellites in view: {}", gsv_data._sats_in_view);
}
_ => {}
}
Timer::after(Duration::from_secs(2)).await;
}
}
/// # Exercise: Receive battery percentage over UART from the power-system
///
/// 1. create an infinite loop that
/// 2. tries to read the Battery Percentage value sent from the Power System,
/// 3. prints the value on success or the error on failure (using Debug formatting),
/// 4. Repeat the read every 20 milliseconds
#[embassy_executor::task]
async fn run_uart(mut uart: Uart<'static, UART1>) {
loop {
match nb::block!(uart.read()) {
Ok(battery_percentage) => {
println!("Battery: {battery_percentage}%");
}
Err(err) => {
println!("Error: {err:?}")
}
}
Timer::after(Duration::from_millis(20)).await;
}
}